299,224 research outputs found

    What can gauge-gravity duality teach us about condensed matter physics?

    Get PDF
    I discuss the impact of gauge-gravity duality on our understanding of two classes of systems: conformal quantum matter and compressible quantum matter. The first conformal class includes systems, such as the boson Hubbard model in two spatial dimensions, which display quantum critical points described by conformal field theories. Questions associated with non-zero temperature dynamics and transport are difficult to answer using conventional field theoretic methods. I argue that many of these can be addressed systematically using gauge-gravity duality, and discuss the prospects for reliable computation of low frequency correlations. Compressible quantum matter is characterized by the smooth dependence of the charge density, associated with a global U(1) symmetry, upon a chemical potential. Familiar examples are solids, superfluids, and Fermi liquids, but there are more exotic possibilities involving deconfined phases of gauge fields in the presence of Fermi surfaces. I survey the compressible systems studied using gauge-gravity duality, and discuss their relationship to the condensed matter classification of such states. The gravity methods offer hope of a deeper understanding of exotic and strongly-coupled compressible quantum states.Comment: 34 pages, 11 figures + 16 pages of Supplementary Material with 4 figures; to appear in Annual Reviews of Condensed Matter Physics; (v2) add a figure, and clarifications; (v3) final version; (v4) small correction

    Universe Models with a Variable Cosmological "Constant" and a "Big Bounce"

    Get PDF
    We present a rich class of exact solutions which contains radiation-dominated and matter-dominated models for the early and late universe. They include a variable cosmological ``constant'' which is derived from a higher dimension and manifests itself in spacetime as an energy density for the vacuum. This is in agreement with observational data and is compatible with extensions of general relativity to string and membrane theory. Our solutions are also typified by a non-singular ``big bounce'' (as opposed to a singular big bang), where matter is created as in inflationary cosmology.Comment: 17 pages, 2 figures, AASTEX. To appear in Ap

    On the capture probabilities of resonance rotation for Mercury

    Get PDF
    Capture probabilities of resonance rotation for Mercur

    Thermal contraction of Mercury

    Get PDF
    Thermal contraction of Mercur

    Thermal and tidal effect on the libration of Mercury

    Get PDF
    Thermal and tidal effect on Mercury libratio

    Level Densities by Particle-Number Reprojection Monte Carlo Methods

    Full text link
    A particle-number reprojection method is applied in the framework of the shell model Monte Carlo approach to calculate level densities for a family of nuclei using Monte Carlo sampling for a single nucleus. In particular we can also calculate level densities of odd-even and odd-odd nuclei despite a new sign problem introduced by the projection on an odd number of particles. The method is applied to level densities in the iron region using the complete pf+g9/2pf+g_{9/2}-shell. The single-particle level density parameter aa and the backshift parameter Δ\Delta are extracted by fitting the microscopically calculated level densities to the backshifted Bethe formula. We find good agreement with experimental level densities with no adjustable parameters in the microscopic calculations. The parameter aa is found to vary smoothly with mass and does not show odd-even effects. The calculated backshift parameter Δ\Delta displays an odd-even staggering effect versus mass and is in better agreement with the experimental data than are the empirical values.Comment: To be published in the proceedings of the Tenth International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, S. Wender, ed., AIP Conference Proceedings (2000
    corecore